FAMP, a Novel ApoA‐I Mimetic Peptide, Suppresses Aortic Plaque Formation Through Promotion of Biological HDL Function in ApoE‐Deficient Mice
نویسندگان
چکیده
BACKGROUND Apolipoprotein (apo) A-I is a major high-density lipoprotein (HDL) protein that causes cholesterol efflux from peripheral cells through the ATP-binding cassette transporter A1 (ABCA1), thus generating HDL and reversing the macrophage foam cell phenotype. Pre-β1 HDL is the smallest subfraction of HDL, which is believed to represent newly formed HDL, and it is the most active acceptor of free cholesterol. Furthermore it has a possible protective function against cardiovascular disease (CVD). We developed a novel apoA-I mimetic peptide without phospholipids (Fukuoka University ApoA-I Mimetic Peptide, FAMP). METHODS AND RESULTS FAMP type 5 (FAMP5) had a high capacity for cholesterol efflux from A172 cells and mouse and human macrophages in vitro, and the efflux was mainly dependent on ABCA1 transporter. Incubation of FAMP5 with human HDL or whole plasma generated small HDL particles, and charged apoA-I-rich particles migrated as pre-β HDL on agarose gel electrophoresis. Sixteen weeks of treatment with FAMP5 significantly suppressed aortic plaque formation (scrambled FAMP, 31.3 ± 8.9% versus high-dose FAMP5, 16.2 ± 5.0%; P<0.01) and plasma C-reactive protein and monocyte chemoattractant protein-1 in apoE-deficient mice fed a high-fat diet. In addition, it significantly enhanced HDL-mediated cholesterol efflux capacity from the mice. CONCLUSIONS A newly developed apoA-I mimetic peptide, FAMP, has an antiatherosclerotic effect through the enhancement of the biological function of HDL. FAMP may have significant atheroprotective potential and prove to be a new therapeutic tool for CVD.
منابع مشابه
An Apolipoprotein A-I Mimetic Peptide Designed with a Reductionist Approach Stimulates Reverse Cholesterol Transport and Reduces Atherosclerosis in Mice
Apolipoprotein A-I (apoA-I) mimetic peptides are considered a promising novel therapeutic approach to prevent and/or treat atherosclerosis. An apoA-I mimetic peptide ELK-2A2K2E was designed with a reductionist approach and has shown exceptional activity in supporting cholesterol efflux but modest anti-inflammatory and anti-oxidant properties in vitro. In this study we compared these in vitro pr...
متن کاملDifferential effects of apolipoprotein A-I-mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice.
BACKGROUND Apolipoprotein (apo) A-I and apoA-I-mimetic peptides showed promise to prevent atherosclerosis development. Using a bypassed vein graft model in apoE-null mice, we evaluated the effects of oral or intraperitoneal administration of an apoA-I-mimetic peptide on evolving atherosclerotic lesions in the vein graft and compared such effects on the established atherosclerotic lesions in aor...
متن کاملTesting the role of apoA-I, HDL, and cholesterol efflux in the atheroprotective action of low-level apoE expression.
Low levels of transgenic mouse apolipoprotein E (apoE) suppress atherosclerosis in apoE knockout (apoE-/-) mice without normalizing plasma cholesterol. To test whether this is due to facilitation of cholesterol efflux from the vessel wall, we produced apoA-I-/-/apoE-/- mice with or without the transgene. Even without apoA-I and HDL, apoA-I-/-/apoE-/- mice had the same amount of aorta cholestery...
متن کامل5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice.
Intravenous administration of apolipoprotein (apo) A-I complexed with phospholipid has been shown to rapidly reduce plaque size in both animal models and humans. Short synthetic amphipathic peptides can mimic the antiatherogenic properties of apoA-I and have been proposed as alternative therapeutic agents. In this study, we investigated the atheroprotective effect of the 5A peptide, a bihelical...
متن کاملCharacterization of apoM in normal and genetically modified mice.
A novel human apolipoprotein [apolipoprotein M (apoM)] was recently described and demonstrated to be a lipocalin. We have now examined apoM in wild-type mice and mice with genetically altered lipoprotein metabolism. Liver and kidney showed high mRNA expression, whereas spleen, heart, brain, and testis demonstrated low expression. ApoM gene expression was initiated on embryonic day 10. Western b...
متن کامل